
Popup Menus
A question arose at a Delphi Developers’ Group
meeting in London recently. How do you find out which
component caused a popup menu to pop up? Remem-
ber that a popup menu may be associated with many
components. No one knew an immediate answer, and
so I set to work looking for a solution. I came up with
the techniques programmed in Listing 1 before finding
the documented PopupComponent run-time property. If a
right-click on a component caused a menu to pop up,
this property points to that component. I just wasted
all that time working out my own method! Or so I
thought.

It seems PopupComponent doesn’t work consistently. It
often gives mis-information, as shown in Figure 1: when
I right-click over a button that’s on some panels, the
popup thinks that Panel1 is under the cursor. So, let’s
dig that old code out of the bin and persevere. But
there’s another thing we can do...

Delphi uses popup menus in the form designer.
However, when you right click, a menu pops up which
is specific to the currently selected component, not the
component under the mouse cursor. Delphi can
generate its popup using a keystroke, Alt-F10 and
again, the selected component is used.

Given that VCL popups work on the current cursor
position, it may also be desirable to allow a keystroke
(Alt-F10) to popup a menu, but again, make it specific
to the component under the cursor, if there is one.

We can use the technique implemented in Listing 1
to do this. The menu that’s generated is a bit like a
Paradox for Windows popup. The first item is descrip-
tive (in this case it tells you the component name and
class) and non-selectable. It is disabled, but not greyed
out. If there is no component under the cursor, the top
menu item and its separator are hidden.

The Alt-F10 keystroke is trapped by setting the
form’s KeyPreview property to True and using an

OnKeyDown event handler. It then pops up the menu at
the current mouse position.

To find which component is under the mouse cursor
when a popup menu pops up we need to implement an
OnPopup event handler for the menu itself and then do
some exploratory work. The PopupMenu1Popup event
handler in Listing 1 calls FindComponentAtCursor to do
the job. FindComponentAtCursor returns the appropriate
component, and the event handler sets the first menu
item’s caption to the name and class of the component.
It then ensures the menu item is disabled, but not
greyed, by using a Windows API call.

The FindComponentAtCursor routine works by identify-
ing the current position of the cursor and then using
another API call to identify the handle of the window
that contains the cursor position. This handle is passed
to FindControl to identify which TWinControl-based
component has that handle as its Handle property.

Contributed by Brian Long (whose email address is
76004.3437@compuserve.com)

Form Design Quick Keys
Delphi makes designing the visual interface of your
applications so much easier, but there are tricks that
can make design even slicker! If you find it a pain

This is your column! Here is your opportunity to
share with your fellow Delphi enthusiasts those
hard-won hints and helps that make your life
easier day by day. Please do send in your Tips &
Tricks to us (preferably by email, to the Editor, at
70630.717@compuserve.com, or alternatively on
disk), whether large or small, on any aspect of
Delphi or related issues. We’re looking forward to
hearing from you!

Tips
& Tricks

➤ Figure 2  FindComponentAtCursor gets it right!

➤ Figure 1  PopupComponent gets it wrong...

September 1995 The Delphi Magazine 47



unit Popupsu;

interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, Menus, StdCtrls,
  ExtCtrls, Grids, Outline;
type
  TForm1 = class(TForm)
    Panel1: TPanel;
    Panel2: TPanel;
    Panel3: TPanel;
    Panel4: TPanel;
    Panel5: TPanel;
    Button1: TButton;
    PopupMenu1: TPopupMenu;
    DummyItem: TMenuItem;
    Memo1: TMemo;
    ListBox1: TListBox;
    RadioButton1: TRadioButton;
    Notebook1: TNotebook;
    Outline1: TOutline;
    N1: TMenuItem;
    Menuitem1: TMenuItem;
    Menuitem2: TMenuItem;
    Menuitem3: TMenuItem;
    EtcItem: TMenuItem;
    procedure PopupMenu1Popup(Sender: TObject);
    procedure FormKeyDown(Sender: TObject;
      var Key: Word; Shift: TShiftState);
  private
    { Private declarations }
  public
    { Public declarations }
    function FindComponentAtCursor: TWinControl;
  end;
var
  Form1: TForm1;
implementation
{$R *.DFM}

function TForm1.FindComponentAtCursor: TWinControl;
var  Pt: TPoint;
begin
  GetCursorPos(Pt);
  Result := FindControl(WindowFromPoint(Pt));
end;

procedure TForm1.PopupMenu1Popup(Sender: TObject);
begin
  with PopupMenu1 do begin
    PopupComponent := FindComponentAtCursor;
    { Write to the menu first, to make sure it is
      brought into life. If you do this last, the
      EnableMenuItem call will have had no effect,
      since the menu won’t actually exist }
    if PopupComponent <> nil then
      DummyItem.Caption := PopupComponent.Name + ’: ’ +
        PopupComponent.ClassName;
    { No component of ours under cursor  so get rid of
      menu item ... }
    DummyItem.Visible := PopupComponent <> nil;
    { ... and seperator }
    N1.Visible := PopupComponent <> nil;
    { Disable the dummy menu item, but _don’t_ grey it
      out. The Enabled property does grey the menu item
      when set to False }
    EnableMenuItem(Handle, DummyItem.Command,
      mf_ByCommand or mf_Disabled);
  end;
end;

procedure TForm1.FormKeyDown(Sender: TObject;
  var Key: Word; Shift: TShiftState);
var  Pt: TPoint;
begin
  GetCursorPos(Pt);
  if (ssAlt in Shift) and (Key = vk_F10) then
    PopupMenu1.Popup(Pt.X, Pt.Y);
end;
end.

➤ Listing 1

moving controls on your forms into exactly the right
position using the mouse, try these:
➣ Use Ctrl plus the cursor keys to move the current

control on the form in one pixel increments;
➣ Use Shift plus the cursor keys to re-size the current

control on the form in one pixel increments;
Also, pressing the Esc key while a control is selected on
a form passes the focus to the underlying control or
form.

Contributed by Tony McKiernan

More Editor Shortcuts
Ever wanted to remove a column of text at the end of
your lines? For example:

Statement1; { Comment 1 }
Statement2; { Comment 2 }
Statement3; { Comment 3 }
Statement4; { Comment 4 }
Statement5; { Comment 5 }
Statement6; { Comment 6 }
Statement7; { Comment 7 }

Suppose you wanted to remove the Comments.
Normally you would have to remove them one by one
by going to the beginning of the comment and pressing
Ctrl-Q-Y (to remove all the text up to the end of the

line). The new Borland IDEs (Delphi 1.0 and BC++ 4.x)
however support a new feature: you can now mark a
column of text. To do this using the Default or Classic
keyboard mapping:
Using the keyboard:
➣ Type Ctrl-O-C (to enter column selection mode),
➣ Now select the part you want to remove, by using

the Shift and cursor keys,
➣ After this you can remove the text by pressing

Ctrl-Del (or Shift-Del to cut it to the clipboard).
This method is also ideal if you want to swap two
columns of text: just mark the column, cut it to the
clipboard and paste it where you want it. To return to
the normal selection mode, press Ctrl-O-K.
Using the mouse:
➣ Use Alt Left Mouse Button to select a block of text.
You can also try out the other marking methods like
inclusive block marking or line marking (Ctrl-O-I and
Ctrl-O-L respectively). Here’s some more editor tips:
➣ Ever wanted to put a complete word into uppercase

or lowercase in the IDE? While the cursor is in the
word, press Ctrl-K-E to change it to lowercase, or
press Ctrl-K-F for lowercase.

➣ Ever wanted to go directly to a specific line number
in the IDE? Press Ctrl-O-G and then enter the line
number you want to go to.

Contributed by Arjan Jansen

48 The Delphi Magazine Issue 3



Replacing if..then..else
Rather than using clumsy if..then..else statements
such as:

procedure TForm1.FormResize(Sender: TObject);
begin
  if Button1.Top + Button1.Height div 2 <
    ClientHeight div 2 then
    Button1.Caption := ’Top Half’
  else
    Button1.Caption := ’Bottom Half’;
end;

you can take advantage of the anomalous typed
constant construct in Delphi, and also the fact that
arrays can have elements indexed by any ordinal type.
So, the condition above becomes:

procedure TForm1.FormResize(Sender: TObject);
const
  Captions: array[False..True] of String[11] =
    (’Bottom Half’, ’Top Half’);
begin
  Button1.Caption :=
    Captions[Button1.Top + Button1.Height div 2 <
    ClientHeight div 2];
end;

Notice that we are using the result of a Boolean expres-
sion to index the array, which was set up with Boolean
element indices. Another example uses a compound
statement in the if statement:

procedure TForm1.FormResize(Sender: TObject);
begin
  if Button1.Top + Button1.Height div 2 <
    ClientHeight div 2 then begin
    Button1.Caption := ’Top Half’;
    Button1.Enabled := True;
  end else begin
    Button1.Caption := ’Bottom Half’;
    Button1.Enabled := False;
  end;
end;

A simplification of this becomes:

procedure TForm1.FormResize(Sender: TObject);
const
  Captions: array[False..True] of
    String[11] = (’Bottom Half’, ’Top Half’);
begin
  Button1.Enabled :=
    Button1.Top + Button1.Height div 2 <
      ClientHeight div 2;
  Button1.Caption := Captions[Button1.Enabled];
end;

Contributed by Brian Long

Are We In Range?
If we want to check if an ordinal value is in a particular
range, or is one of a number of values, many third and
fourth generation languages instill the following
techniques in us:

if (TestValue >= 3) and (TestValue <= 7) then
  ShowMessage(’It’’s between 3 and 7’);
if (TestValue <> 3) and (TestValue <> 5) and
  (TestValue <> 7) then
  ShowMessage(’Found it’);

However Object Pascal offers us alternative constructs
to express this with:

if TestValue in [3..7] then
  ShowMessage(’It’’s between 3 and 7’);
if not (TestValue in [3, 5, 7]) then
  ShowMessage(’Found it’);

These expressions make use of sets which are a conven-
ient aid to reducing typing and making code (in my
opinion) more readable. Sets have limitations here
though: they only take values which take one byte, in
other words no Integer, Longint or Word variables,
amongst others. So the following won’t work:

if not (Message.Msg in [wm_LButtonDown,
  wm_LButtonDblClk]) then
  inherited WndProc(Message);

To cater for other types, we can avoid saying:

if (Message.Msg <> wm_LButtonDown) and
  (Message.Msg <> wm_LButtonDblClk) then
  inherited WndProc(Message);

by using a case statement. This allows you to specify
ranges and lists of values, as you can in a set, but
without the one byte restriction. So, for example, the
following may be a preferable scheme (bear in mind
that in many cases the tests we need to perform in our
programs may be rather larger than these simple
ones):

case Message.Msg of
  wm_LButtonDown, wm_LButtonDblClk: ;
else
  inherited WndProc(Message);
end;

Contributed by Brian Long

Thanks to all our contributors to this issue’s Tips
& Tricks column. Sorry to those who submitted
Tips that we didn’t have space for in this issue,
they’re in the file for Issue 4!

September 1995 The Delphi Magazine 51


	Popup Menus 
	Form Design Quick Keys 
	More Editor Shortcuts
	Replacing it...then...else
	Are We in Range?

